PhD Projects for 2019 Entry
Effect of structure on dynamics of geological materials (Dr C Braithwaite)
The dynamic mechanical response of geological materials is of great importance, both industrially and scientifically, with applications ranging from seismology and planetary impact, to oil exploration and mining. The materials themselves are often complex and polycrystalline with a variety of constituent minerals and wide range of inherent length scales. While significant research has been conducted in the field, currently there is a lack of data examining the effect that the microstructure plays in determining strength parameters. This project aims to use a variety of existing high strain rate experimental equipment to examine the response of geological materials. Novel methodologies and diagnostics will need to be developed to monitor grain level behaviour and relate this to macroscale properties. Interaction with computational modelling will also be sought, to enhance the understanding of the experimental results obtained. The research group has substantial experience in this area and maintains a variety of relevant industrial contacts.
Granular materials under high rates of compaction (Dr C Braithwaite)
The processes by which brittle granular materials compact largely depend on their microstructure and the properties and interactions of the grains themselves. Predicting the dynamic response of these systems requires knowledge of how grain-scale phenomena manifest as macroscopic response. Such insight is crucial for a wide range of high rate applications including planetary formation and impact cratering, the response to blast and
penetration, and predicting and improving soil response to earthquakes and landslips through seismic coupling. This project will follow on from a highly successful project studying the shock compaction of cohesionless sands at different moisture levels; it will extend the research programme to silts (smaller grain sizes), cohesive materials such as clays, and will begin to study how granular compaction can be controlled using suitable ‘modifiers’.
Ultra-fast temperature sensors for shock (Dr D Williamson)
Accurate temperature measurement during high speed events remains a consistent problem in shock-physics. Existing transducers are rate limited by their thermal mass, whereas standard optical techniques can only be applied under limited conditions (usually very high temperatures). In this project, we will focus on developing new techniques for ultra-fast temperature measurement. These will include modelling, fabrication and testing of nanometre-scale thermistor based instrumentation and fast response infra-red pyrometry. The techniques will be applied to study shock temperatures in polymeric and liquid systems, which are of increasing industrial importance.
Adhesion and damage in composites (Dr D Williamson)
Composite materials are of great importance in the everyday world. Their fundamentally inhomogeneous nature means composites can exhibit complex forms of behaviour, relating to characteristics of the binder, filler and the nature of the interaction between them. This project will focus on predicting the behaviour of composites using physically based models, supplemented by experimental data. Low temperature thermo-physical measurements enable key model parameters to be populated. Predictions may then be validated using other, mechanically based, measurements. It will suit a keen experimentalist, and will likely involve extensive collaboration with other researchers.
Additive manufacturing of high solid loading composites (Dr D Williamson)
Your idea here (Dr D Williamson / Dr C Braithwaite / Dr James Perry)
We are always open to ideas with regards to potential PhD projects within the group's field of research, including joint and interdisciplinary projects run between several research groups, where students have access to funding (Departmental, College, JRF etc) - see our research and facilities pages if you need some inspiration.